阴阳眼小师妹(172)

作者:晶晶静莹莹 阅读记录 TXT下载

对于激光武器的研究,当然,人们对于他的期望值是很大的,人们所期望的激光武器,对他的期望没有最强只有更强,而相比较中国关于激光武器的科研方面,研究经费有限也是限制中国的激光武器没有做到俄美那么强大的客观理由,毕竟经济决定武器的先进程度,因为研究经费是高科技武器研发的嘴基本的保障,中国的经济一方面要保障民生,一方面又要负责研发高科技武器来保家卫国,所以大国经济承担着大国风险,同样承担着一个大国的所有的经济,文化,政治,军事,以及国际关系,这些复杂多变的关系,构成了大国成本。

第236章 能够制造完美的光学透镜?

光学透镜的制造,中国在这个领域所处的位置相对来说还是比较先进的,中国工匠的匠心精神支撑着中国制造的科学化,合理化,与合法化,中国工匠的的大国工匠精神,极力的向制造完美的光学透镜方向靠拢,我们也许在制造这种完美的光学透镜方向努力着,也许别有一天,在某一个机缘巧合的早晨,就真的吧这种完美到极限的光学透镜给制造出来了呢?

完美的光学透镜的外形图纸既然能够计算出来,那么我们就要相信人类的双手可以攻克这个制造的极限。工匠精神的完美,需要天时地利的奇迹,工匠造物,像一场朝圣,像细枝末节的完美完善,像一场天时地利的奇迹,更像爱情。

虽然工匠制造完美的光学透镜和爱情之间相联系,这么讲有些扯,但是细思极恐,当你对待工匠精神要比爱情还要那么郑重和认真,请问?还有什么事情不能够攻破。

好了,我们还是讨论光学透镜的问题吧,吧该死的爱情抛到天涯海角,抛到九霄云外,毕竟对于只看中现实和以识时务者为俊杰的理工男的眼里,爱情似乎是一个不能用理科思维攻坚的课题。

光学透镜的制造,首先是画图构造和计算方式的方面,只有在应用制造的过程中,最后的一部分,才是,抛光的问题。

科学计算完美光学透镜的画图和计算几乎实在完美的空间的条件的想象力中计算的,相反的现实空间存在着制造偏差的太多的外界的条件,而在科学构架和构图中似乎难以考虑到这些个问题。科学计算是一个需要反复推算,反复计算,反复试验,反复论证的过程,我们在科学上是不允许存在着将错就错的糊涂账本的。

制造完美的光学透镜,首先就要制作一个模型,这个通过算数的方式科学计算的模型至少他是完美的官学透镜,只有在这个计算好的模型的基础上才有机会制作出这样的透镜。

当然计算是精准的,但是3D打印技术是无法实施完美光学透镜的完成的,他仅仅能够起到一个铺筑的作用,也就是说,我们在电脑中模拟的模型,在电脑的空间里计算出来完美的光学透镜的基本模本,然后运用3D打印技术打印出来一个这样的模型,再根据这个3D打印出来的模型作为模本,通过激光和认为的抛光和打磨技术,做到几乎零失误,零误差的完美光学透镜,这个方法只是理论上的方法,如今现在有人试图用这种方法制造出来完美的光学透镜,但是很遗憾,工匠们制造的光学透镜还是存在着千万分之一毫米级的误差的,虽然这个误差的偏差几乎是纳米级的,但是他也是误差,有误差,有偏差,我们就不能够称之为,完美。

纵然科学家不是完美主义,科学存在的本身就有不完美和无法完全用科学解释的问题,但是这并不能阻止我们研究它,探索他的脚步和步伐,科学实践与研究,也是人类文明进步的标志。

第237章 是否可能制造出室温下的磁性半导体?

我们知道,在超高温以及超低温环境下,是可以把某些金属甚至是非金属物质,制作成超导体的功能和科学实践的,半导体的研究早在爱迪生时代,和电脑时代,半导体的研究就有了跨时代的意义,集成电路,电脑CPU,都是半导体的超浓缩的功能性电脑硬件。单纯的就半导体来说,半导体开创了计算机时代和电力被人类智能化应用的时代,很难想象,半导体通过断电,通电,半导体通电,这个零与一的二进位制的循环,能够在超级计算机的计算下,完成庞大的计算功能。

但是具有磁性的半导体,却不能够单纯的与半导体相比较,在磁场中的半导体,或者是半导体本身具备的磁场,都是一项高精尖的科学技术。并且处于研发状态,在室温下制造磁性半导体这个领域,应用阶段还尚未达到。

制造室温下的磁性半导体是一个可以研究的科研项目,是一个科研课题,而不是一项什么科学难题。

那么磁性半导体在物理学应用范围中具备什么功能和用处呢?

至少磁性半导体在极端高温或者极端低温的情况下会出现超导体,自旋现象。

制造室温下的磁性半导体则是要导入金属或者半导体金属材料,比如掺杂锰,硅,氧化锌,钙氮基稀磁,注入氮,铬单晶,铟化砷,这些具有半导体性质的化合物或者化学元素,在客观的实验条件具备室温的情况下,使其具备磁性,`我们制造室温下磁性半导体的研究,首先应用的就是其自旋的现象,但是这种自旋现象有什么用呢?

当然是有用的,在高新尖武器装备的应用中,和激光武器的应用中,都会涉及磁性半导体的自旋现象的应用。

这种磁性半导体的自旋现象,甚至可以应用于很多领域,不仅仅是计算机领域,甚至在制造高科技武器,和高能非核武器的技术上具备着突破性的研究成果,但至今为止我们对于这方面的研究也仅仅处于科学实验室的方向上,在具体的非核武器的半导体自旋的有关武器的制造方面,还出现了很多的空白方面。

在我们试图制造室温下的磁性半导体的同时,我们需要在半导体材料中添加的化学成分,很大一部分也属于半导体材料,也可以说,半导体材料本身就是可以在特定的条件下具磁性的性质的。

既然在实验室阶段,我们的科学领域已经对于常温下的磁性半导体材料已经做了现实的研究,那么这个磁性半导体的科学实践方面,很大程度上,这种材料的研究对于未来的军事,以及计算机的研究方向,都是突破性的,核高创新的领域,至少在军事上,在某些方面美国和俄罗斯关于磁性半导体的关于非核武器的研究,已经进入了应用的领域,这个是我们的科学界应该赶超,和更加致力于研究的领域。

至少在某些大型的军事杂志和,一些间谍卫星关于俄美的军事武器的监控中,曾经有过有关自旋的磁性半导体的相关应用于未来近太空武器的研究和相关武器的报道。

对于我们仅仅停留在实验室阶段的研究,相比较发达国家的武器应用阶段,我们还是走的太慢了一些。

第238章 什么是高温超导性之后的成对机制?

既然有高温超导性,就有低温超导性,在极端的高温和低温条件下,物质都具备超导的能力,但是这个高温超导的成对机制又该如何定义呢?根据系统相对论,物体温度的高低是由物体内光子的能量密度所决定的。在极端高温,或者极端低温的情境下,两个电子凝聚、可以形成束缚态,形成电子对,这个所谓的电子对,库珀对,成就了超导理论的基础。

正是超高温与超低温情境下同样的物质会同样的产生超导现象,那么相比较接近宇宙温度的低温超导,高温超导更具备研究意义。

在爱因斯坦相对论中将高温超导,与低温超导的研究上升到了光子的能量密度的研究,而获得诺贝尔物理学奖的BCS理论,却在某种程度上存在着解释模糊,他的成对机制并不够完善的说明超导现象。

而爱因斯坦的光子理论对于超导现象的说明却还没有形成相对完善的理论的时候,爱因斯塔就过世了,也就是说,光子理论仅仅在提出一个概念的时候,还没有被完善理论的时候就出现了理论上的断层。

只有在爱因斯坦相对论中才会提到光子的概念,而超导BCS理论仅仅就原子内部的电子对作为解释的依据,显然偏颇。当然他也很容易被推倒。

同类小说推荐:

耽美作者主页排行榜